| Lattice Microbes 2.5
    This is for whole cell modeling | 
| Classes | |
| class | SvgContext | 
| Functions | |
| _makeMaskPath (binarySlice) | |
| mplBoundaryPath (binarySlice, faceColor='none', edgeColor='r', extent=None) | |
| _processImgToDisplay (img, cmap, scl, vmin, vmax, mode='rgba') | |
| imshow (img, scl=None, cmap="inferno", vmin=None, vmax=None, xlines=[], ylines=[]) | |
| alphaBlend (rgbaBottom, rgbaTop) | |
| _interpretColor (c) | |
| markup (imgIn, scl=4, cmap="inferno", vmin=None, vmax=None, markerColor="blue", markerWeight=1, markerSize=2, markers=None, mask=None, maskColor="green", maskWeight=1, svgFile=None) | |
Image analysis tools.
| 
 | protected | 
| 
 | protected | 
| 
 | protected | 
| jLM.ImageAnalysis.alphaBlend | ( | rgbaBottom, | |
| rgbaTop ) | 
Alpha blend two rgba images
Arguments:
    rgbaBottom:
        Image of dimensions (N,M,4) to use as base
    rgbaTop:
        Image of dimensions (N,M,4) to blend atop rgbaBottom
Returns:
    Blended rgba image
 
| jLM.ImageAnalysis.imshow | ( | img, | |
| scl = None, | |||
| cmap = "inferno", | |||
| vmin = None, | |||
| vmax = None, | |||
| xlines = [], | |||
| ylines = [] ) | 
Quick display of array in notebook
Arguments:
    img (array):
        A grayscale image of shape (M,N) or a rgb image of shape (M,N,3)
Keyword Arguments:
    scl (int):
        Factor to upscale image
    cmap (str):
        Matplotlib colormap
    vmin (float):
        Minimum value
    vmax (float):
        Maximum value
    xlines (list):
        List of lines of constant x
    ylines (list):
        List of lines of constant y
Returns:
   PIL.Image: PIL image which is displayed in Jupyter
 | jLM.ImageAnalysis.markup | ( | imgIn, | |
| scl = 4, | |||
| cmap = "inferno", | |||
| vmin = None, | |||
| vmax = None, | |||
| markerColor = "blue", | |||
| markerWeight = 1, | |||
| markerSize = 2, | |||
| markers = None, | |||
| mask = None, | |||
| maskColor = "green", | |||
| maskWeight = 1, | |||
| svgFile = None ) | 
Markup an image
Markup generates nearest-neighbor interpolated images with binary mask outlines,
and labeled points. Colors are specified as an RGB triple, a hex code, or a named
color.
Arguments:
    imgIn:
        Image data, either mono (N,M), rgb (N,M,3), or rgba (N,M,4)
Keyword arguments:
    scl (int):
        Upscale image by factor
    cmap (str):
        Matplotlib colormap name:
    vmin (float):
        Minimum value
    vmax (float):
        Maximum value
    markers:
        Markers to place. Either a single x,y pair, a list of x,y pairs, or a dictionary
        where keys are the marker color and the values are the x,y pair
    markerColor:
        Color of + markers.
    markerWeight:
        Linewidth of + markers in pixels
    markerSize:
        Diameter of + markers
    mask:
        Binary mask(s) to trace. Either a single numpy array, or a dictionary with color 
        keys mapping to binary arrays. The outline is placed around the True elements
    maskColor:
        Color of mask outline
    maskWeight:
        Linewidth of mask outline in pixels
    svgFile:
        Also write the SVG output to this file
        
Returns:
    IPython.core.display.SVG
 | jLM.ImageAnalysis.mplBoundaryPath | ( | binarySlice, | |
| faceColor = 'none', | |||
| edgeColor = 'r', | |||
| extent = None ) | 
Generate a Matplotlib patch defining the boundaries of a binary image.
Arguments:
    binarySlice:
        Binary 2D image
Keyword Arguments:
    faceColor:
        Matplotlib color of interior (True)
    edgeColor:
        Matplotlib color of boundary
Returns:
    matplotlib.patches.PathPatch: patches